The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior.
نویسندگان
چکیده
How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study, we investigated the neural code underlying the perception of stimulus intensity in the somatosensory system. We first characterized the responses of SA1 (slowly adapting type 1), RA (rapidly adapting), and PC (Pacinian) afferents of macaque monkeys to sinusoidal, diharmonic, and bandpass noise stimuli. We then had human subjects rate the perceived intensity of a subset of these stimuli. On the basis of these neurophysiological and psychophysical measurements, we evaluated a series of hypotheses about which aspect(s) of the neural activity evoked at the somatosensory periphery account for perception. We evaluated three types of neural codes. The first consisted of population codes based on the firing rate of neurons located directly under the probe. The second included population codes based on the firing rate of the entire population of active neurons. The third included codes based on the number of active afferents. We found that the response evoked in the localized population is logarithmic with stimulus amplitude (given a constant frequency composition), whereas the population response across all neurons is linear with stimulus amplitude. We conclude that stimulus intensity is best accounted for by the firing rate evoked in afferents located under or near the locus of stimulation, weighted by afferent type.
منابع مشابه
Neural coding of passive lump detection in compliant artificial tissue.
Here, we investigate the neural mechanisms of detecting lumps embedded in artificial compliant tissues. We performed a combined psychophysical study of humans performing a passive lump detection task with a neurophysiological study in nonhuman primates (Macaca mulatta) where we recorded the responses of peripheral mechanoreceptive afferents to lumps embedded at various depths in intermediates (...
متن کاملTime-course of vibratory adaptation and recovery in cutaneous mechanoreceptive afferents.
Extended suprathreshold vibratory stimulation applied to the skin results in a desensitization of cutaneous mechanoreceptive afferents. In a companion paper, we describe the dependence of the threshold shift on the parameters of the adapting stimulus and discuss neural mechanisms underlying afferent adaptation. Here we describe the time-course of afferent adaptation and recovery. We found that ...
متن کاملTactile roughness: neural codes that account for psychophysical magnitude estimates.
Hypothetical neural codes underlying the sensation of tactile roughness were investigated in a combined psychophysical and neurophysiological study. The stimulus set consisted of plastic surfaces embossed with dot arrays of varying dot diameter and center-to-center spacing. Human subjects explored each surface with the pad of the index finger and reported their subjective sense of roughness mag...
متن کاملNeural coding of tactile texture: comparison of spatial and temporal mechanisms for roughness perception.
A previous study showed that roughness perception may depend on either temporal or spatial variations in firing rate among cutaneous mechanoreceptive afferents. The present study was designed to distinguish between these hypotheses. Plastic surfaces embossed with patterns of dots designed to produce predictable alterations in temporal and spatial firing rate variation were used as stimuli in ps...
متن کاملWeber's law orthogonal to the psychometric function
Psychometric function plots the percentage of the correct responses among an entire pool of responses (cumulative probability) in a psychophysical task versus the amount of change in an independent variable. These changes in the independent variable are made with reference to a constant initial value. If this initial value is altered, the psychometric function will change according to Weber’s l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 43 شماره
صفحات -
تاریخ انتشار 2007